CO2-Driven Ocean Acidification Alters and Weakens Integrity of the Calcareous Tubes Produced by the Serpulid Tubeworm, Hydroides elegans
نویسندگان
چکیده
As a consequence of anthropogenic CO(2-)driven ocean acidification (OA), coastal waters are becoming increasingly challenging for calcifiers due to reductions in saturation states of calcium carbonate (CaCO(3)) minerals. The response of calcification rate is one of the most frequently investigated symptoms of OA. However, OA may also result in poor quality calcareous products through impaired calcification processes despite there being no observed change in calcification rate. The mineralogy and ultrastructure of the calcareous products under OA conditions may be altered, resulting in changes to the mechanical properties of calcified structures. Here, the warm water biofouling tubeworm, Hydroides elegans, was reared from larva to early juvenile stage at the aragonite saturation state (Ω(A)) for the current pCO(2) level (ambient) and those predicted for the years 2050, 2100 and 2300. Composition, ultrastructure and mechanical strength of the calcareous tubes produced by those early juvenile tubeworms were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and nanoindentation. Juvenile tubes were composed primarily of the highly soluble CaCO(3) mineral form, aragonite. Tubes produced in seawater with aragonite saturation states near or below one had significantly higher proportions of the crystalline precursor, amorphous calcium carbonate (ACC) and the calcite/aragonite ratio dramatically increased. These alterations in tube mineralogy resulted in a holistic deterioration of the tube hardness and elasticity. Thus, in conditions where Ω(A) is near or below one, the aragonite-producing juvenile tubeworms may no longer be able to maintain the integrity of their calcification products, and may result in reduced survivorship due to the weakened tube protection.
منابع مشابه
Temperature Dependent Effects of Elevated CO2 on Shell Composition and Mechanical Properties of Hydroides elegans: Insights from a Multiple Stressor Experiment
The majority of marine benthic invertebrates protect themselves from predators by producing calcareous tubes or shells that have remarkable mechanical strength. An elevation of CO2 or a decrease in pH in the environment can reduce intracellular pH at the site of calcification and thus interfere with animal's ability to accrete CaCO3. In nature, decreased pH in combination with stressors associa...
متن کاملDecreased pH does not alter metamorphosis but compromises juvenile calcification of the tube worm Hydroides elegans
Using CO2 perturbation experiments, we examined the pre- and post-settlement growth responses of a dominant biofouling tubeworm (Hydroides elegans) to a range of pH. In three different experiments, embryos were reared to, or past, metamorphosis in seawater equilibrated to CO2 values of about 480 (control), 980, 1,480, and 2,300 μatm resulting in pH values of around 8.1 (control), 7.9, 7.7, and ...
متن کاملTrans-generational responses to low pH depend on parental gender in a calcifying tubeworm
The uptake of anthropogenic CO2 emissions by oceans has started decreasing pH and carbonate ion concentrations of seawater, a process called ocean acidification (OA). Occurring over centuries and many generations, evolutionary adaptation and epigenetic transfer will change species responses to OA over time. Trans-generational responses, via genetic selection or trans-generational phenotypic pla...
متن کاملSeaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient
Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carb...
متن کاملTEMPORAL VARIATION IN AN INITIAL MARINE BIOFILM COMMUNITY AND ITS EFFECT ON LARVAL SETTLEMENT OF THE TUBEWORM Hydroides elegans
Planktonic larvae of many invertebrates settle preferentially on surfaces covered by bacterial biofilms. The polychaete tubeworm Hydroides elegans is induced to settle by biofilms and is the primary colonizer of newly submerged surfaces in the succession of macrofouling invertebrates in Pearl Harbor, Hawai'i. This study examines cultureindependent community composition, as well as densities of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012